
[Return to Main Page] NMOS 6502 Opcodes by John Pickens, Updated by Bruce Clark and by Ed Spittles

[Up to Tutorials and Aids]

INDEX

Branches
Decimal
Mode

Interrupt
Flag

Overflow
Flag

Program
Counter

Stack Times
Wrap-
around

ADC AND ASL BCC BCS BEQ BIT BMI BNE BPL BRK BVC BVS CLC

CLD CLI CLV CMP CPX CPY DEC DEX DEY EOR INC INX INY JMP

JSR LDA LDX LDY LSR NOP ORA PHA PHP PLA PLP ROL ROR RTI

RTS SBC SEC SED SEI STA STX STY TAX TAY TSX TXA TXS TYA

ADC (ADd with Carry)

Affects Flags: N V Z C

MODE SYNTAX HEX LEN TIM

Immediate ADC #$44 $69 2 2

Zero Page ADC $44 $65 2 3

Zero Page,X ADC $44,X $75 2 4

Absolute ADC $4400 $6D 3 4

Absolute,X ADC $4400,X $7D 3 4+

Absolute,Y ADC $4400,Y $79 3 4+

Indirect,X ADC ($44,X) $61 2 6

Indirect,Y ADC ($44),Y $71 2 5+

+ add 1 cycle if page boundary crossed

ADC results are dependant on the setting of the decimal flag. In decimal mode, addition is carried out on the
assumption that the values involved are packed BCD (Binary Coded Decimal).

There is no way to add without carry.

AND (bitwise AND with accumulator)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Immediate AND #$44 $29 2 2

Zero Page AND $44 $25 2 3

Zero Page,X AND $44,X $35 2 4

Absolute AND $4400 $2D 3 4

Absolute,X AND $4400,X $3D 3 4+

Absolute,Y AND $4400,Y $39 3 4+

Indirect,X AND ($44,X) $21 2 6

Indirect,Y AND ($44),Y $31 2 5+

+ add 1 cycle if page boundary crossed

ASL (Arithmetic Shift Left)

http://6502.org/
http://6502.org/
http://6502.org/tutorials/tutorials.htm
http://6502.org/tutorials/tutorials.htm
http://6502.org/tutorials/6502opcodes.html#BRA
http://6502.org/tutorials/6502opcodes.html#BRA
http://6502.org/tutorials/6502opcodes.html#DFLAG
http://6502.org/tutorials/6502opcodes.html#DFLAG
http://6502.org/tutorials/6502opcodes.html#DFLAG
http://6502.org/tutorials/6502opcodes.html#DFLAG
http://6502.org/tutorials/6502opcodes.html#IFLAG
http://6502.org/tutorials/6502opcodes.html#IFLAG
http://6502.org/tutorials/6502opcodes.html#IFLAG
http://6502.org/tutorials/6502opcodes.html#IFLAG
http://6502.org/tutorials/6502opcodes.html#VFLAG
http://6502.org/tutorials/6502opcodes.html#VFLAG
http://6502.org/tutorials/6502opcodes.html#VFLAG
http://6502.org/tutorials/6502opcodes.html#VFLAG
http://6502.org/tutorials/6502opcodes.html#PC
http://6502.org/tutorials/6502opcodes.html#PC
http://6502.org/tutorials/6502opcodes.html#PC
http://6502.org/tutorials/6502opcodes.html#PC
http://6502.org/tutorials/6502opcodes.html#STACK
http://6502.org/tutorials/6502opcodes.html#STACK
http://6502.org/tutorials/6502opcodes.html#TIMES
http://6502.org/tutorials/6502opcodes.html#TIMES
http://6502.org/tutorials/6502opcodes.html#WRAP
http://6502.org/tutorials/6502opcodes.html#WRAP
http://6502.org/tutorials/6502opcodes.html#WRAP
http://6502.org/tutorials/6502opcodes.html#WRAP
http://6502.org/tutorials/6502opcodes.html#ADC
http://6502.org/tutorials/6502opcodes.html#ADC
http://6502.org/tutorials/6502opcodes.html#AND
http://6502.org/tutorials/6502opcodes.html#AND
http://6502.org/tutorials/6502opcodes.html#ASL
http://6502.org/tutorials/6502opcodes.html#ASL
http://6502.org/tutorials/6502opcodes.html#BCC
http://6502.org/tutorials/6502opcodes.html#BCC
http://6502.org/tutorials/6502opcodes.html#BCS
http://6502.org/tutorials/6502opcodes.html#BCS
http://6502.org/tutorials/6502opcodes.html#BEQ
http://6502.org/tutorials/6502opcodes.html#BEQ
http://6502.org/tutorials/6502opcodes.html#BIT
http://6502.org/tutorials/6502opcodes.html#BIT
http://6502.org/tutorials/6502opcodes.html#BMI
http://6502.org/tutorials/6502opcodes.html#BMI
http://6502.org/tutorials/6502opcodes.html#BNE
http://6502.org/tutorials/6502opcodes.html#BNE
http://6502.org/tutorials/6502opcodes.html#BPL
http://6502.org/tutorials/6502opcodes.html#BPL
http://6502.org/tutorials/6502opcodes.html#BRK
http://6502.org/tutorials/6502opcodes.html#BRK
http://6502.org/tutorials/6502opcodes.html#BVC
http://6502.org/tutorials/6502opcodes.html#BVC
http://6502.org/tutorials/6502opcodes.html#BVS
http://6502.org/tutorials/6502opcodes.html#BVS
http://6502.org/tutorials/6502opcodes.html#CLC
http://6502.org/tutorials/6502opcodes.html#CLC
http://6502.org/tutorials/6502opcodes.html#CLD
http://6502.org/tutorials/6502opcodes.html#CLD
http://6502.org/tutorials/6502opcodes.html#CLI
http://6502.org/tutorials/6502opcodes.html#CLI
http://6502.org/tutorials/6502opcodes.html#CLV
http://6502.org/tutorials/6502opcodes.html#CLV
http://6502.org/tutorials/6502opcodes.html#CMP
http://6502.org/tutorials/6502opcodes.html#CMP
http://6502.org/tutorials/6502opcodes.html#CPX
http://6502.org/tutorials/6502opcodes.html#CPX
http://6502.org/tutorials/6502opcodes.html#CPY
http://6502.org/tutorials/6502opcodes.html#CPY
http://6502.org/tutorials/6502opcodes.html#DEC
http://6502.org/tutorials/6502opcodes.html#DEC
http://6502.org/tutorials/6502opcodes.html#DEX
http://6502.org/tutorials/6502opcodes.html#DEX
http://6502.org/tutorials/6502opcodes.html#DEY
http://6502.org/tutorials/6502opcodes.html#DEY
http://6502.org/tutorials/6502opcodes.html#EOR
http://6502.org/tutorials/6502opcodes.html#EOR
http://6502.org/tutorials/6502opcodes.html#INC
http://6502.org/tutorials/6502opcodes.html#INC
http://6502.org/tutorials/6502opcodes.html#INX
http://6502.org/tutorials/6502opcodes.html#INX
http://6502.org/tutorials/6502opcodes.html#INY
http://6502.org/tutorials/6502opcodes.html#INY
http://6502.org/tutorials/6502opcodes.html#JMP
http://6502.org/tutorials/6502opcodes.html#JMP
http://6502.org/tutorials/6502opcodes.html#JSR
http://6502.org/tutorials/6502opcodes.html#JSR
http://6502.org/tutorials/6502opcodes.html#LDA
http://6502.org/tutorials/6502opcodes.html#LDA
http://6502.org/tutorials/6502opcodes.html#LDX
http://6502.org/tutorials/6502opcodes.html#LDX
http://6502.org/tutorials/6502opcodes.html#LDY
http://6502.org/tutorials/6502opcodes.html#LDY
http://6502.org/tutorials/6502opcodes.html#LSR
http://6502.org/tutorials/6502opcodes.html#LSR
http://6502.org/tutorials/6502opcodes.html#NOP
http://6502.org/tutorials/6502opcodes.html#NOP
http://6502.org/tutorials/6502opcodes.html#ORA
http://6502.org/tutorials/6502opcodes.html#ORA
http://6502.org/tutorials/6502opcodes.html#PHA
http://6502.org/tutorials/6502opcodes.html#PHA
http://6502.org/tutorials/6502opcodes.html#PHP
http://6502.org/tutorials/6502opcodes.html#PHP
http://6502.org/tutorials/6502opcodes.html#PLA
http://6502.org/tutorials/6502opcodes.html#PLA
http://6502.org/tutorials/6502opcodes.html#PLP
http://6502.org/tutorials/6502opcodes.html#PLP
http://6502.org/tutorials/6502opcodes.html#ROL
http://6502.org/tutorials/6502opcodes.html#ROL
http://6502.org/tutorials/6502opcodes.html#ROR
http://6502.org/tutorials/6502opcodes.html#ROR
http://6502.org/tutorials/6502opcodes.html#RTI
http://6502.org/tutorials/6502opcodes.html#RTI
http://6502.org/tutorials/6502opcodes.html#RTS
http://6502.org/tutorials/6502opcodes.html#RTS
http://6502.org/tutorials/6502opcodes.html#SBC
http://6502.org/tutorials/6502opcodes.html#SBC
http://6502.org/tutorials/6502opcodes.html#SEC
http://6502.org/tutorials/6502opcodes.html#SEC
http://6502.org/tutorials/6502opcodes.html#SED
http://6502.org/tutorials/6502opcodes.html#SED
http://6502.org/tutorials/6502opcodes.html#SEI
http://6502.org/tutorials/6502opcodes.html#SEI
http://6502.org/tutorials/6502opcodes.html#STA
http://6502.org/tutorials/6502opcodes.html#STA
http://6502.org/tutorials/6502opcodes.html#STX
http://6502.org/tutorials/6502opcodes.html#STX
http://6502.org/tutorials/6502opcodes.html#STY
http://6502.org/tutorials/6502opcodes.html#STY
http://6502.org/tutorials/6502opcodes.html#TAX
http://6502.org/tutorials/6502opcodes.html#TAX
http://6502.org/tutorials/6502opcodes.html#TAY
http://6502.org/tutorials/6502opcodes.html#TAY
http://6502.org/tutorials/6502opcodes.html#TSX
http://6502.org/tutorials/6502opcodes.html#TSX
http://6502.org/tutorials/6502opcodes.html#TXA
http://6502.org/tutorials/6502opcodes.html#TXA
http://6502.org/tutorials/6502opcodes.html#TXS
http://6502.org/tutorials/6502opcodes.html#TXS
http://6502.org/tutorials/6502opcodes.html#TYA
http://6502.org/tutorials/6502opcodes.html#TYA
http://6502.org/tutorials/6502opcodes.html#DFLAG
http://6502.org/tutorials/6502opcodes.html#DFLAG

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Accumulator ASL A $0A 1 2

Zero Page ASL $44 $06 2 5

Zero Page,X ASL $44,X $16 2 6

Absolute ASL $4400 $0E 3 6

Absolute,X ASL $4400,X $1E 3 7

ASL shifts all bits left one position. 0 is shifted into bit 0 and the original bit 7 is shifted into the Carry.

BIT (test BITs)

Affects Flags: N V Z

MODE SYNTAX HEX LEN TIM

Zero Page BIT $44 $24 2 3

Absolute BIT $4400 $2C 3 4

BIT sets the Z flag as though the value in the address tested were ANDed with the accumulator. The N and
V flags are set to match bits 7 and 6 respectively in the value stored at the tested address.

BIT is often used to skip one or two following bytes as in:

CLOSE1 LDX #$10 If entered here, we

 .BYTE $2C effectively perform

CLOSE2 LDX #$20 a BIT test on $20A2,

 .BYTE $2C another one on $30A2,

CLOSE3 LDX #$30 and end up with the X

CLOSEX LDA #12 register still at $10

 STA ICCOM,X upon arrival here.

Beware: a BIT instruction used in this way as a NOP does have effects: the flags may be modified, and the
read of the absolute address, if it happens to access an I/O device, may cause an unwanted action.

Branch Instructions

Affect Flags: none

All branches are relative mode and have a length of two bytes. Syntax is "Bxx Displacement" or (better)
"Bxx Label". See the notes on the Program Counter for more on displacements.

Branches are dependant on the status of the flag bits when the op code is encountered. A branch not taken
requires two machine cycles. Add one if the branch is taken and add one more if the branch crosses a page
boundary.

MNEMONIC HEX

BPL (Branch on PLus) $10

BMI (Branch on MInus) $30

BVC (Branch on oVerflow Clear) $50

BVS (Branch on oVerflow Set) $70

BCC (Branch on Carry Clear) $90

BCS (Branch on Carry Set) $B0

BNE (Branch on Not Equal) $D0

BEQ (Branch on EQual) $F0

There is no BRA (BRanch Always) instruction but it can be easily emulated by branching on the basis of a
known condition. One of the best flags to use for this purpose is the oVerflow which is unchanged by all but

http://6502.org/tutorials/6502opcodes.html#PC
http://6502.org/tutorials/6502opcodes.html#PC
http://6502.org/tutorials/6502opcodes.html#VFLAG
http://6502.org/tutorials/6502opcodes.html#VFLAG

addition and subtraction operations.

A page boundary crossing occurs when the branch destination is on a different page than the instruction
AFTER the branch instruction. For example:

 SEC

 BCS LABEL

 NOP

A page boundary crossing occurs (i.e. the BCS takes 4 cycles) when (the address of) LABEL and the NOP
are on different pages. This means that

 CLV

 BVC LABEL

 LABEL NOP

the BVC instruction will take 3 cycles no matter what address it is located at.

BRK (BReaK)

Affects Flags: B

MODE SYNTAX HEX LEN TIM

Implied BRK $00 1 7

BRK causes a non-maskable interrupt and increments the program counter by one. Therefore an RTI will go
to the address of the BRK +2 so that BRK may be used to replace a two-byte instruction for debugging and
the subsequent RTI will be correct.

CMP (CoMPare accumulator)

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Immediate CMP #$44 $C9 2 2

Zero Page CMP $44 $C5 2 3

Zero Page,X CMP $44,X $D5 2 4

Absolute CMP $4400 $CD 3 4

Absolute,X CMP $4400,X $DD 3 4+

Absolute,Y CMP $4400,Y $D9 3 4+

Indirect,X CMP ($44,X) $C1 2 6

Indirect,Y CMP ($44),Y $D1 2 5+

+ add 1 cycle if page boundary crossed

Compare sets flags as if a subtraction had been carried out. If the value in the accumulator is equal or greater
than the compared value, the Carry will be set. The equal (Z) and negative (N) flags will be set based on
equality or lack thereof and the sign (i.e. A>=$80) of the accumulator.

CPX (ComPare X register)

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Immediate CPX #$44 $E0 2 2

Zero Page CPX $44 $E4 2 3

http://6502.org/tutorials/6502opcodes.html#RTI
http://6502.org/tutorials/6502opcodes.html#RTI

Absolute CPX $4400 $EC 3 4

Operation and flag results are identical to equivalent mode accumulator CMP ops.

CPY (ComPare Y register)

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Immediate CPY #$44 $C0 2 2

Zero Page CPY $44 $C4 2 3

Absolute CPY $4400 $CC 3 4

Operation and flag results are identical to equivalent mode accumulator CMP ops.

DEC (DECrement memory)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Zero Page DEC $44 $C6 2 5

Zero Page,X DEC $44,X $D6 2 6

Absolute DEC $4400 $CE 3 6

Absolute,X DEC $4400,X $DE 3 7

EOR (bitwise Exclusive OR)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Immediate EOR #$44 $49 2 2

Zero Page EOR $44 $45 2 3

Zero Page,X EOR $44,X $55 2 4

Absolute EOR $4400 $4D 3 4

Absolute,X EOR $4400,X $5D 3 4+

Absolute,Y EOR $4400,Y $59 3 4+

Indirect,X EOR ($44,X) $41 2 6

Indirect,Y EOR ($44),Y $51 2 5+

+ add 1 cycle if page boundary crossed

Flag (Processor Status) Instructions

Affect Flags: as noted

These instructions are implied mode, have a length of one byte and require two machine cycles.

MNEMONIC HEX

CLC (CLear Carry) $18

SEC (SEt Carry) $38

CLI (CLear Interrupt) $58

SEI (SEt Interrupt) $78

CLV (CLear oVerflow) $B8

http://6502.org/tutorials/6502opcodes.html#CMP
http://6502.org/tutorials/6502opcodes.html#CMP
http://6502.org/tutorials/6502opcodes.html#CMP
http://6502.org/tutorials/6502opcodes.html#CMP

CLD (CLear Decimal) $D8

SED (SEt Decimal) $F8

Notes:

 The Interrupt flag is used to prevent (SEI) or enable (CLI) maskable interrupts (aka IRQ's). It does not
signal the presence or absence of an interrupt condition. The 6502 will set this flag automatically in response
to an interrupt and restore it to its prior status on completion of the interrupt service routine. If you want
your interrupt service routine to permit other maskable interrupts, you must clear the I flag in your code.

 The Decimal flag controls how the 6502 adds and subtracts. If set, arithmetic is carried out in packed
binary coded decimal. This flag is unchanged by interrupts and is unknown on power-up. The implication is
that a CLD should be included in boot or interrupt coding.

 The Overflow flag is generally misunderstood and therefore under-utilised. After an ADC or SBC
instruction, the overflow flag will be set if the twos complement result is less than -128 or greater than +127,
and it will cleared otherwise. In twos complement, $80 through $FF represents -128 through -1, and $00
through $7F represents 0 through +127. Thus, after:

 CLC

 LDA #$7F ; +127

 ADC #$01 ; + +1

the overflow flag is 1 (+127 + +1 = +128), and after:

 CLC

 LDA #$81 ; -127

 ADC #$FF ; + -1

the overflow flag is 0 (-127 + -1 = -128). The overflow flag is not affected by increments, decrements, shifts
and logical operations i.e. only ADC, BIT, CLV, PLP, RTI and SBC affect it. There is no op code to set the
overflow but a BIT test on an RTS instruction will do the trick.

INC (INCrement memory)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Zero Page INC $44 $E6 2 5

Zero Page,X INC $44,X $F6 2 6

Absolute INC $4400 $EE 3 6

Absolute,X INC $4400,X $FE 3 7

JMP (JuMP)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Absolute JMP $5597 $4C 3 3

Indirect JMP ($5597) $6C 3 5

JMP transfers program execution to the following address (absolute) or to the location contained in the
following address (indirect). Note that there is no carry associated with the indirect jump so:

AN INDIRECT JUMP MUST NEVER USE A

VECTOR BEGINNING ON THE LAST BYTE

OF A PAGE

For example if address $3000 contains $40, $30FF contains $80, and $3100 contains $50, the result of JMP

($30FF) will be a transfer of control to $4080 rather than $5080 as you intended i.e. the 6502 took the low
byte of the address from $30FF and the high byte from $3000.

JSR (Jump to SubRoutine)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Absolute JSR $5597 $20 3 6

JSR pushes the address-1 of the next operation on to the stack before transferring program control to the
following address. Subroutines are normally terminated by a RTS op code.

LDA (LoaD Accumulator)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Immediate LDA #$44 $A9 2 2

Zero Page LDA $44 $A5 2 3

Zero Page,X LDA $44,X $B5 2 4

Absolute LDA $4400 $AD 3 4

Absolute,X LDA $4400,X $BD 3 4+

Absolute,Y LDA $4400,Y $B9 3 4+

Indirect,X LDA ($44,X) $A1 2 6

Indirect,Y LDA ($44),Y $B1 2 5+

+ add 1 cycle if page boundary crossed

LDX (LoaD X register)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Immediate LDX #$44 $A2 2 2

Zero Page LDX $44 $A6 2 3

Zero Page,Y LDX $44,Y $B6 2 4

Absolute LDX $4400 $AE 3 4

Absolute,Y LDX $4400,Y $BE 3 4+

+ add 1 cycle if page boundary crossed

LDY (LoaD Y register)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Immediate LDY #$44 $A0 2 2

Zero Page LDY $44 $A4 2 3

Zero Page,X LDY $44,X $B4 2 4

Absolute LDY $4400 $AC 3 4

Absolute,X LDY $4400,X $BC 3 4+

+ add 1 cycle if page boundary crossed

http://6502.org/tutorials/6502opcodes.html#RTS
http://6502.org/tutorials/6502opcodes.html#RTS

LSR (Logical Shift Right)

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Accumulator LSR A $4A 1 2

Zero Page LSR $44 $46 2 5

Zero Page,X LSR $44,X $56 2 6

Absolute LSR $4400 $4E 3 6

Absolute,X LSR $4400,X $5E 3 7

LSR shifts all bits right one position. 0 is shifted into bit 7 and the original bit 0 is shifted into the Carry.

Wrap-Around

Use caution with indexed zero page operations as they are subject to wrap-around. For example, if the X
register holds $FF and you execute LDA $80,X you will not access $017F as you might expect; instead you
access $7F i.e. $80-1. This characteristic can be used to advantage but make sure your code is well
commented.

It is possible, however, to access $017F when X = $FF by using the Absolute,X addressing mode of LDA
$80,X. That is, instead of:

 LDA $80,X ; ZeroPage,X - the resulting object code is: B5 80

which accesses $007F when X=$FF, use:

 LDA $0080,X ; Absolute,X - the resulting object code is: BD 80 00

which accesses $017F when X = $FF (a at cost of one additional byte and one additional cycle). All of the
ZeroPage,X and ZeroPage,Y instructions except STX ZeroPage,Y and STY ZeroPage,X have a
corresponding Absolute,X and Absolute,Y instruction. Unfortunately, a lot of 6502 assemblers don't have an
easy way to force Absolute addressing, i.e. most will assemble a LDA $0080,X as B5 80. One way to
overcome this is to insert the bytes using the .BYTE pseudo-op (on some 6502 assemblers this pseudo-op is
called DB or DFB, consult the assembler documentation) as follows:

 .BYTE $BD,$80,$00 ; LDA $0080,X (absolute,X addressing mode)

The comment is optional, but highly recommended for clarity.

In cases where you are writing code that will be relocated you must consider wrap-around when assigning
dummy values for addresses that will be adjusted. Both zero and the semi-standard $FFFF should be avoided
for dummy labels. The use of zero or zero page values will result in assembled code with zero page opcodes
when you wanted absolute codes. With $FFFF, the problem is in addresses+1 as you wrap around to page 0.

Program Counter

When the 6502 is ready for the next instruction it increments the program counter before fetching the
instruction. Once it has the op code, it increments the program counter by the length of the operand, if any.
This must be accounted for when calculating branches or when pushing bytes to create a false return address
(i.e. jump table addresses are made up of addresses-1 when it is intended to use an RTS rather than a JMP).

The program counter is loaded least signifigant byte first. Therefore the most signifigant byte must be pushed

first when creating a false return address.

When calculating branches a forward branch of 6 skips the following 6 bytes so, effectively the program
counter points to the address that is 8 bytes beyond the address of the branch opcode; and a backward
branch of $FA (256-6) goes to an address 4 bytes before the branch instruction.

Execution Times

Op code execution times are measured in machine cycles; one machine cycle equals one clock cycle. Many
instructions require one extra cycle for execution if a page boundary is crossed; these are indicated by a +
following the time values shown.

NOP (No OPeration)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Implied NOP $EA 1 2

NOP is used to reserve space for future modifications or effectively REM out existing code.

ORA (bitwise OR with Accumulator)

Affects Flags: N Z

MODE SYNTAX HEX LEN TIM

Immediate ORA #$44 $09 2 2

Zero Page ORA $44 $05 2 3

Zero Page,X ORA $44,X $15 2 4

Absolute ORA $4400 $0D 3 4

Absolute,X ORA $4400,X $1D 3 4+

Absolute,Y ORA $4400,Y $19 3 4+

Indirect,X ORA ($44,X) $01 2 6

Indirect,Y ORA ($44),Y $11 2 5+

+ add 1 cycle if page boundary crossed

Register Instructions

Affect Flags: N Z

These instructions are implied mode, have a length of one byte and require two machine cycles.

MNEMONIC HEX

TAX (Transfer A to X) $AA

TXA (Transfer X to A) $8A

DEX (DEcrement X) $CA

INX (INcrement X) $E8

TAY (Transfer A to Y) $A8

TYA (Transfer Y to A) $98

DEY (DEcrement Y) $88

INY (INcrement Y) $C8

ROL (ROtate Left)

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Accumulator ROL A $2A 1 2

Zero Page ROL $44 $26 2 5

Zero Page,X ROL $44,X $36 2 6

Absolute ROL $4400 $2E 3 6

Absolute,X ROL $4400,X $3E 3 7

ROL shifts all bits left one position. The Carry is shifted into bit 0 and the original bit 7 is shifted into the
Carry.

ROR (ROtate Right)

Affects Flags: N Z C

MODE SYNTAX HEX LEN TIM

Accumulator ROR A $6A 1 2

Zero Page ROR $44 $66 2 5

Zero Page,X ROR $44,X $76 2 6

Absolute ROR $4400 $6E 3 6

Absolute,X ROR $4400,X $7E 3 7

ROR shifts all bits right one position. The Carry is shifted into bit 7 and the original bit 0 is shifted into the
Carry.

RTI (ReTurn from Interrupt)

Affects Flags: all

MODE SYNTAX HEX LEN TIM

Implied RTI $40 1 6

RTI retrieves the Processor Status Word (flags) and the Program Counter from the stack in that order
(interrupts push the PC first and then the PSW).

Note that unlike RTS, the return address on the stack is the actual address rather than the address-1.

RTS (ReTurn from Subroutine)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Implied RTS $60 1 6

RTS pulls the top two bytes off the stack (low byte first) and transfers program control to that address+1. It
is used, as expected, to exit a subroutine invoked via JSR which pushed the address-1.

http://6502.org/tutorials/6502opcodes.html#JSR
http://6502.org/tutorials/6502opcodes.html#JSR

RTS is frequently used to implement a jump table where addresses-1 are pushed onto the stack and accessed
via RTS eg. to access the second of four routines:

 LDX #1

 JSR EXEC

 JMP SOMEWHERE

LOBYTE

 .BYTE <ROUTINE0-1,<ROUTINE1-1

 .BYTE <ROUTINE2-1,<ROUTINE3-1

HIBYTE

 .BYTE >ROUTINE0-1,>ROUTINE1-1

 .BYTE >ROUTINE2-1,>ROUTINE3-1

EXEC

 LDA HIBYTE,X

 PHA

 LDA LOBYTE,X

 PHA

 RTS

SBC (SuBtract with Carry)

Affects Flags: N V Z C

MODE SYNTAX HEX LEN TIM

Immediate SBC #$44 $E9 2 2

Zero Page SBC $44 $E5 2 3

Zero Page,X SBC $44,X $F5 2 4

Absolute SBC $4400 $ED 3 4

Absolute,X SBC $4400,X $FD 3 4+

Absolute,Y SBC $4400,Y $F9 3 4+

Indirect,X SBC ($44,X) $E1 2 6

Indirect,Y SBC ($44),Y $F1 2 5+

+ add 1 cycle if page boundary crossed

SBC results are dependant on the setting of the decimal flag. In decimal mode, subtraction is carried out on
the assumption that the values involved are packed BCD (Binary Coded Decimal).

There is no way to subtract without the carry which works as an inverse borrow. i.e, to subtract you set the
carry before the operation. If the carry is cleared by the operation, it indicates a borrow occurred.

STA (STore Accumulator)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Zero Page STA $44 $85 2 3

Zero Page,X STA $44,X $95 2 4

Absolute STA $4400 $8D 3 4

Absolute,X STA $4400,X $9D 3 5

Absolute,Y STA $4400,Y $99 3 5

Indirect,X STA ($44,X) $81 2 6

Indirect,Y STA ($44),Y $91 2 6

Stack Instructions

These instructions are implied mode, have a length of one byte and require machine cycles as indicated. The

"PuLl" operations are known as "POP" on most other microprocessors. With the 6502, the stack is always
on page one ($100-$1FF) and works top down.

MNEMONIC HEX TIM

TXS (Transfer X to Stack ptr) $9A 2

TSX (Transfer Stack ptr to X) $BA 2

PHA (PusH Accumulator) $48 3

PLA (PuLl Accumulator) $68 4

PHP (PusH Processor status) $08 3

PLP (PuLl Processor status) $28 4

STX (STore X register)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Zero Page STX $44 $86 2 3

Zero Page,Y STX $44,Y $96 2 4

Absolute STX $4400 $8E 3 4

STY (STore Y register)

Affects Flags: none

MODE SYNTAX HEX LEN TIM

Zero Page STY $44 $84 2 3

Zero Page,X STY $44,X $94 2 4

Absolute STY $4400 $8C 3 4

Last Updated Oct 17, 2020.

