
[Return to Main Page] 6502 Compare Instructions from 6502 Software Design, Updated by Bruce Clark

[Up to Tutorials and Aids]

The compare instructions set or clear three of the status flags (Carry, Zero, and Negative) that can be tested
with branch instructions, without altering the contents of the operand. There are three types of compare
instructions:

The Compare Instructions

Instruction Description

CMP Compare Memory and Accumulator

CPX Compare Memory and Index X

CPY Compare Memory and Index Y

The CMP instruction supports eight different addressing modes, the same ones supported by the ADC and
SBC instructions. Since the X and Y registers function primarily as counters and indexes, the CPX and CPY
instructions do not require this elaborate addressing capability and operate with just three addressing modes
(immediate, absolute, and zero page).

The compare instructions subtract (without carry) an immediate value or the contents of a memory location
from the addressed register, but do not save the result in the register. The only indications of the results are
the states of the three status flags: Negative (N), Zero (Z), and Carry (C). The combination of these three
flags indicate whether the register contents are less than, equal to (the same as), or greater than the operand
"data" (the immediate value or contents of the addressed memory location. The table below summarizes the
result indicators for the compare instructions.

Compare Instruction Results

Compare Result N Z C

A, X, or Y < Memory * 0 0

A, X, or Y = Memory 0 1 1

A, X, or Y > Memory * 0 1

* The N flag will be bit 7 of A, X, or Y - Memory

The compare instructions serve only one purpose; they provide information that can be tested by a
subsequent branch instruction. For example, to branch if the contents of a register are less than an
immediate or memory value, you would follow the compare instruction with a Branch on Carry Clear (BCC)
instruction, as shown by the following:

Example: Comparing Memory to the Accumulator

http://6502.org/
http://6502.org/
http://6502.org/tutorials/tutorials.htm
http://6502.org/tutorials/tutorials.htm

 CMP $20 ;Accumulator less than location $20?

 BCC THERE

HERE ;No, continue execution here.

 .

 .

 .

THERE ;Execute this if Accumulator is less than location $20.

 .

 .

 .

The table below lists the branch instruction(s) that should follow the compare instruction, for each
register/data relationship. In this table, THERE represents the label of the instruction executed if the branch
test succeeds and HERE represents the label of te instruction executed if the branch test does not succeed.
Besides comparing a memory location and a register, the compare instructions are handy for comparing one
memory location with another, by loading one into a register (A, X, or Y).

Use of Branch Instructions with Compare

To Branch If
Follow compare instruction with

For unsigned numbers For signed numbers

Register is less than data BCC THERE BMI THERE

Register is equal to data BEQ THERE BEQ THERE

Register is greater than data
BEQ HERE
BCS THERE

BEQ HERE
BPL THERE

Register is less than or equal to data
BCC THERE
BEQ THERE

BMI THERE
BEQ THERE

Register is greater than or equal to data BCS THERE BPL THERE

The next example contains a routine that tests whether the contents of two memory locations are identical,
and sets a flag in memory to so indicate.

Example: Testing Two Locations for Equality

;This routine sets memory location $22 to "One" if the contents

;of locations $20 and $21 are equal, and to "Zero" if otherwise.

 LDX #00 ;Initialize flag to zero

 LDA $20 ;Get first value

 CMP $21 ;Is second value identical?

 BNE DONE

 INX ;Yes, set flag to one

DONE STX $22 ;Store flag

Below is another memory-to-memory comparison routine. It stores the larger of two values in the higher
memory location.

Example: Arranging Two Numbers in Order of Value

;This routine arranges two numbers in locations $20 and $21 in

;order of value, with the lower-valued number in location $20.

 LDA $21 ;Load second number into accumulator

 CMP $20 ;Compare the numbers

 BCS DONE ;DONE if first is less than or equal to second.

 LDX $20

 STA $20 ;Otherwise swap them.

 STX $21

DONE .

 .

 .

The next example contains a register-to-constant comparison routine in which two branch instructions are
used with one compare instruction, so that the "less than", "equal to", and "greater than" conditions are
tested. Since the branch instructions do not afect any flags in the processor status register, BNE GT3 is
basing its branch decision on the same comparison that the BCS EQGT3 based its branch decision on!

Example: A Three-Way Decision Routine

;This routine stores the contents of the accumulator into location

;$20, $21, or $22, depending upon whether the accumulator holds a

;value les than 3, equal to 3, or grather than 3, respectively.

 CMP #03 ;Compare accumulator to 3

 BCS EQGT3

 STA $20 ;Accumulator less than 3

 JMP DONE

EQGT3 BNE GT3

 STA $21 ;Accumulator equal to 3

 JMP DONE

GT3 STA $22 ;Accumulator greater than 3

DONE .

 .

 .

Thus far, our discussion has concentrated on the CMP instruction, which compares the accumulator with
memory. Of what value are the other compare instructions (CPX and CPY)? Their primary value is to
monitor the contents of X or Y when these registers are being employed as count-up counters. In these
cases, CPX or CPY is used to compare the count against a maximum value of 255 (decimal) in memory.
The next example is a routine that will move up to 256 consecutive memory bytes, with the CPX instruction
doing the "all bytes moved" check each time a byte is moved.

Example: A Multiple-Byte Move Routine

;This routine moves up to 256 bytes of memory, starting at

;location $20, to another portion of memory, starting at location

;$0320. The byte count is contained in location $1F.

 LDX #00 ;Index = 0

NXTBYT LDA $20,X ;Load next byte

 STA $0320,X ;Store next byte

 INX ;Increment index

 CPX $1F ;All bytes moved?

 BNE NXTBYT ;If not, move next byte

The compare instructions compare two "entire" 8-bit values. There are situations, however, when you will
need to test one or more individual bits in a memory location. This can be done by masking out the
unwanted bits with an AND instruction. However, in the process of masking-out the unwanted bits, the
AND instruction destroys the mask contained in the accumulator. Certainly, the mask could be reloaded, but

this requires additional processor time and additional instructions. The same job can be done, without
altering the accumulator, by executing a BIT instruction. A tutorial on the BIT instruction can also be found
in the Tutorials section of 6502.org.

Last Updated December 1, 2002.

http://6502.org/tutorials/tutorials.htm
http://6502.org/tutorials/tutorials.htm

